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Abstract

To comprehend the principles underlying sensory information processing, it is important to understand how the nervous
system deals with various sources of perturbation. Here, we analyze how the representation of motion information in the
fly’s nervous system changes with temperature and luminance. Although these two environmental variables have a
considerable impact on the fly’s nervous system, they do not impede the fly to behave suitably over a wide range of
conditions. We recorded responses from a motion-sensitive neuron, the H1-cell, to a time-varying stimulus at many different
combinations of temperature and luminance. We found that the mean firing rate, but not firing precision, changes with
temperature, while both were affected by mean luminance. Because we also found that information rate and coding
efficiency are mainly set by the mean firing rate, our results suggest that, in the face of environmental perturbations, the
coding efficiency is improved by an increase in the mean firing rate, rather than by an increased firing precision.
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Introduction

Several flying insects are able to partially control the

temperature of (part of) their bodies during certain periods of

time, by means of physiological or behavioral strategies [1–3].

Blowflies (Calliphora vicina) however, barely thermoregulate. During

flight, when considerable amount of heat is produced by the flight

muscles, the temperature of their thorax increases by about five

degrees Celsius. The head temperature increases less - by just

about two degrees above the temperature of environment in the

same period of time. Head and thorax temperature reach the

environment temperature around one hundred seconds after the

flight stops [4]. Therefore, their body temperature closely follows

the temperature of the environment, which can easily vary more

than ten degrees during the day. Within this range, the kinetics of

biochemical reactions underlying neural information transmission

might vary between three and tenfold [5], and indeed, a strong

impact on several response properties of fly’s photoreceptors [6,7]

and other interneurons [8,9] has been observed. Despite the effect

of temperature on their nervous system, blowflies show normal

flight behavior over a wide temperature range (10–37uC) [10,11].

One of the processes influenced by temperature changes is the

adaptation of the photoreceptors to light intensity variations.

Adaptation to light intensity is necessary to match the limited

dynamic range of the photoreceptor responses to encode the wide

range of intensities found in natural conditions. Moreover, at low

light intensities, the combination of the discrete nature of light and

the high sensitivity of the photoreceptors introduces noise into the

system, which seems to be responsible for around 50% of the noise

measured in the response of postsynaptic cells [12]. The

consequences of this noise further downstream the visual pathway

are still being debated [13–17].

Here, we determine to what extent temperature and luminance

influence the firing rate and precision of the responses of an

identified wide-field, motion-sensitive neuron in the fly’s visual

system called ‘H1-cell’ [18], and how the response properties of

H1 contribute to information transmission in the system. The H1-

cell is located in the posterior part of the third neuropil of the fly’s

visual system, the so-called lobula plate [19,20]. It is excited by

ipsilateral horizontal back-to-front motion, and inhibited by

motion in the opposite direction, i.e. front-to-back. H1 is part of

a network of about 60 neurons [21–25] that supply the neck and

flight motor system with motion information for flight stabilization

and course control [26–31]. We recorded H1 responses from 84

flies to a square wave grating moving with a time-varying velocity

(Fig. 1A) at 42 different combinations of temperature and

luminance. The temperature range covered about half of the

range flies face under natural conditions. The luminance range

covered four orders of magnitude and includes intensities where

photon noise effects are common, corresponding to dusk and

dawn under natural conditions.

Results/Discussion

Experimental Findings
The effects of temperature and luminance on H1 responses are

dramatic, but strikingly different for the two parameters (Fig. 1B,

C). Under warm and bright conditions (red spikes in Fig. 1B, red

line in Fig. 1C), the cell’s firing activity follows the time course of

the stimulus velocity with a short delay, reaching maximum firing

frequencies of about 300 Hz for velocities along the preferred

direction of the cell. Compared to that, a temperature reduction

decreases the mean firing rate but leaves the temporal structure of
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the response unaffected (blue spikes in Fig. 1B, blue line in Fig. 1C).

In contrast, a luminance reduction reduces not only the mean

firing rate, but additionally alters the temporal structure of the

response (light red spikes in Fig. 1B, light red line in Fig. 1C). The

full spectrum of responses for all parameter combinations is shown

in Fig. 1D.

In order to quantify the effect of temperature and luminance on

the various response properties like firing rate and reliability, we

calculated for each luminance a temperature coefficient Q10 (the

ratio of the respective response parameter at 250C and 150C). A

strong influence of temperature expresses itself in a Q10 value

different from 1 at many different luminance levels. Furthermore,

we calculated at each temperature a luminance coefficient, K1000,

as the ratio of the response parameter at 100 cd m{2 and at 0.1 cd

m{2. Again, a strong influence of luminance on a given response

property is revealed by K1000 values different from 1 at many

different temperatures. Both temperature and luminance have a

strong effect on the mean firing rate of H1, with Q10 and K1000

values of up to 3 (Fig. 2A). However, temperature has almost no

effect on the response reliability while luminance does (Fig. 2 B–

D). We quantified the response reliability in two different ways:

first, we measured the standard deviation (STD) of the occurrence

times of the first spike after a velocity transition, i.e. a zero-crossing

from an inhibitory to an excitatory direction of motion (Fig. 2D).

This measure should, at least in principle, be independent of the

mean firing rate. Second, we measured the response reliability

50 ms after a velocity transition using the ratio of the variance of

the spike count and the mean spike count (Fano Factor) within a

20 ms time window (Fig. 2C). Here, a better response reliability

can be achieved in two ways - a smaller variance or a higher firing

rate associated with the refractory period of the neuron [32]. The

effect of temperature on the STD or on the Fano Factor is rather

small: at almost all light intensities tested, the coefficients of

temperature (Q10) are not statistically different from 1 (Fig. 2B,C).

In contrast, the reliability of the response improves considerably

for all measures of reliability (all pv0.001, Wilcoxon test) with

increasing luminance. The coefficient of luminance (K1000) reaches

values smaller than 0.5 at several temperatures measured. These

findings are summarized by the Spearman correlation coefficients

between response properties and temperature and luminance

(Table 1). In summary, we find that temperature does not

significantly affect the response reliability, while higher luminance

values increase the response reliability substantially (Figs. 2 B,C).

It is interesting to note that neither the increase of photorecep-

tor bandwidth [7] nor the temperature dependent spontaneous

activity of the system has a strong impact on the reliability of the

responses. However, the effect of temperature on the firing rate

depends on the mean luminance - the Q10 coefficients decrease

with increasing luminance (Fig. 2A). We observed similar

interdependent effects of temperature and luminance in the

spontaneous firing rate of H1: The Q10 value in the dark was

around 6.4 and fell to 3.3 in the presence of a stationary image

with a luminance of 84 cd m{2 (n = 5 flies). This effect has also

been measured in several response properties of the fly’s

photoreceptors [6,7] such as e.g. the bandwidth, which has a

Q10 of 3 when the cells are dark adapted and 1.9 when they are

light adapted [7]. What consequences will such effects have on the

amount of information about the stimulus in the H1 response? To

what extent do the firing rate and firing precision determine the

efficiency of the system to encode information?

Information Theoretic Analysis
To answer these questions, we estimated the information rate

and coding efficiency of H1 responses. To calculate these

quantities, we discretized the response in bins of 2ms and

represented the occurrence of a spike in a bin by ‘1’ and the

absence by ‘0’. Probability distributions of binary words with

lengths from 2ms up to 20 ms were estimated and information

rates calculated. The temporal scale of the system (encoding

window) was defined as the length of the binary words at which the

information rate was maximal (see Materials and Methods, and

Fig. S1 for details). The behaviorally relevant temporal scales for

flies, estimated from flight trajectories in which males flies pursued

females, are about 40ms [33]. This is the total delay of the system,

from the detection of the female in the visual field up to the

correction of the flight course. Therefore, it is reasonable to expect

that the information transmission in the system occurs in shorter

time-scales. Moreover, changes in the temporal scale of the

response are known to be part of the mechanisms of adaptation -

e.g., temperature and luminance alter the response time-scales of

the photoreceptors [7] - and should thus be taken into account.

We also analyzed the importance of the precise spike timing on the

information rate by using two encoding modes to determine it: one

which recognizes the exact positions of the spikes within the

encoding window (‘timing’) to discriminate responses and one that

just counts the number of spikes within it (‘count’).

In a similar way as the encoding window, the latency of the

system was defined as the lag between the velocity and H1

responses that maximizes the mutual information between them.

To calculate the mutual information, we estimate the joint

probability distribution between binary response words and

instantaneous velocity, both discretized in bins of 2ms. The

velocity amplitude was discretized in bins of 1 degree per second

and the length of the word used was the one that maximizes the

information rate between stimulus and response (see Materials and

Methods, and Fig. S1 for details).

The dependence of the information rate on luminance and

temperature is similar to the dependence of the mean firing rate

(Figs. 2A and 3A). Here again, temperature and luminance have

interdependent effects on the information rate. The temporal

precision of responses after velocity transitions (Fig. 2B,D) is set

mainly by the mean light level and does not have a great impact

Author Summary

How is information about the sensory world represented
in the brain? How does this representation change, when
the stimulus is contaminated by noise or the brain itself is
perturbed by temperature variations? We address these
questions by studying motion vision in the fly’s visual
system. Flies barely thermoregulate but behave normally
within a large temperature range. Moreover, visual stimuli
are naturally noisy at low intensities and might change
considerably within short periods of time. To analyze how
the fly’s brain handles such perturbations, we recorded
responses of a motion-sensitive neuron at different
temperatures and light intensities. We analyzed how the
responses change and how much information about the
stimulus is lost due to noise. We found that response
variability and delay are determined mainly by the light
intensity, but are barely affected by temperature varia-
tions. The information content of the responses was
weakly influenced by response noise or delay. The mean
firing rate of the neuron, which was strongly influenced by
temperature and light level, determined how much
stimulus information was contained in response. Based
on our results, we can say that over a wide range of
environmental conditions, their influence on the efficiency
of the system to process information is small.

Efficiency of Motion Processing Set by Firing Rate
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Figure 1. Time dependent-firing rate. A A segment of the image velocity as a function of time. B Raster plots of the same H1 at different
experimental conditions of temperature and light intensity. C Respective average rates calculated using 137 trials for each condition. D Average rates
of 325 acquisitions (84 flies) in a wider set of experimental conditions. Scales are the same as indicated in C. For each condition, firing rates of several
flies were pooled - n is the sample size and the gray curves are bootstrap confidence intervals (a~0:08, 1000 replications).
doi:10.1371/journal.pcbi.1000860.g001

Efficiency of Motion Processing Set by Firing Rate
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Figure 2. Firing rate and precision as a function of temperature and light intensity. A Mean firing rate. B Spike jitter, measured as the
standard deviation of the first spike after a velocity transient (from negative to positive). C Average Fano factors for transient responses 50 ms after a
velocity transition, calculated in an interval of 50ms, using overlapping windows of 20 ms. Color code represents the linear interpolation of the mean
values at the experimental points, indicated by the crosses. Q10 and K1000 are the temperature and luminance coefficients, respectively (for details see
text). Error bars are bootstrap confidence intervals (a~0:08, 1000 replications) D Top: Segment of a stimulus waveform during a velocity transition
from inhibitory to excitatory direction. Center: Raster plots of the responses in 20 trials at three different conditions, indicated in the legends. Each
mark represents the occurrence of one spike. Bottom: Distributions of the arrival time of the first spike for the three different conditions shown above,
obtained using a kernel density estimator with optimized width for Gaussian distributions.
doi:10.1371/journal.pcbi.1000860.g002

Efficiency of Motion Processing Set by Firing Rate
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on the information rate, as previous work suggested [14]: as

temperature increases, the information rate increases too (Fig. 3A),

although the firing precision remains the same. Indeed, the partial

correlation coefficient between the information rate and the STD

of the first spike, with the effect of the mean firing rate removed, is

0.23, whereas the correlation with the mean firing rate, with the

effect of the STD removed, is 0.91 (Table 2). Thus, the

information rate is determined mostly by the mean firing rate,

rather than by the noise in the system or in the input signal. The

information rate of the spike-timing mode at an optimal encoding

window was on average only 1.06 bits s{1 (n = 325) higher than of

the count encoding mode.

The coding efficiency is more robust against changes on

temperature or luminance than the information rate (Fig. 3B).

Again, the effect of thermal fluctuations is reduced as the

luminance increases. Observing the partial correlation coefficients

(Table 2), we can see the temporal precision of the response does

not contribute as much as the mean firing rate to the coding

efficiency. Moreover, the sign of the correlation coefficient

between coding efficiency and firing precision is reversed when

the effect of the mean firing is removed. This means that the firing

rate masked the real effect of the firing precision on the coding

efficiency, mainly because both firing rate and precision vary when

the light intensity changes. The count encoding mode was on

average 15% more efficient to convey information than the timing

encoding mode at the respective optimal encoding windows.

These results suggest that the improvement of the information rate

and coding efficiency is achieved by an increase of the mean firing

rate, rather than the firing precision.

Why does the fly additionally increase the firing precision as the

mean light level increases, if the efficiency of the system to convey

information barely changes? The amount of information trans-

Table 1. Correlation between response properties and
temperature and light intensity.

Response properties Temperature
Light
intensity

Mean firing rate 0.47 0.44

Fano factor (transient) 0.04 (p~0:45) 20.64

STD first spike 20.005 (p~0:92) 20.55

Spearman rank correlation. The p values not shown were smaller than 0.05
(n = 325).
doi:10.1371/journal.pcbi.1000860.t001

Figure 3. Information rates, efficiencies and optimal time-scales as a function of temperature and luminance. A. Optimal information
rates and B. respective coding efficiencies. C. Optimal encoding windows and D. latencies. Color code represents the linear interpolation of the mean
values at the experimental points, indicated by the crosses. Q10 and K1000 are the temperature and luminance coefficients, respectively (for details see
text). Error bars are bootstrap confidence intervals (a~0:08, 1000 replications).
doi:10.1371/journal.pcbi.1000860.g003

Efficiency of Motion Processing Set by Firing Rate
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mitted is not the only essential signal characteristic needed for

survival - the temporal scale of the system is also fundamental.

Here we estimated two response temporal scales - the optimal

encoding window and the latency (see Materials and Methods, and

Fig. S1). The encoding window decreases with luminance (pv

0.001) and temperature (pv0.001) (Fig. 3C) with similar mean

values of temperature and luminance coefficients, Q10 and K1000,

of around 0.7. The effect of the firing precision on the encoding

window is remarkable (Table 2), which might explain why its Q10

weakly depends on luminance. Similarly, the response latency

reduces with light or temperature (Fig. 3D). There is a big

difference in the amplitude of the temperature and luminance

coefficients: whereas the mean Q10 is about 0.8, the mean K1000 is

0.33. The correlations between the latency and the mean firing

rate and precision are similar (Table 2), which suggests that the

influence of the firing precision on the temporal scale of the system

is as important as the impact of the mean firing rate.

Modeling
In order to gain insight how temperature and luminance affect

the motion processing pathway from the photoreceptors up to H1,

we implemented a model of the system under study (see Materials

and Methods, Modeling). This model (Fig. 4A, B) incorporates

temperature and luminance dependent photoreceptor impulse

responses taken from [6], an array of elementary motion detectors

[34,35], and an Integrate-and-Fire model cell that spatially

integrates over the array of motion detector inputs. Our aim

was to reproduce the measured firing rates and firing precision for

the three stimulus conditions depicted in Fig. 1C and Fig. 2D. In

particular, the model should be able to reproduce the temperature

dependent effects - change of response strength, conservation of

firing precision - and the luminance dependent effects - changes of

both firing rate and firing precision. The model modifications

necessary for reproducing the measurements depicted in Fig. 1C

and Fig. 2D thus should allow us to hypothesize what parameters

of the motion processing pathway are influenced by the two

different sources of perturbation, temperature and luminance, and

in which way. The results of the simulation are shown in Fig. 4D,

E, G, H.

We first fit the model to reproduce the results for the bright-

warm stimulus condition (red traces in Fig. 1, 2). We then went on

to modify as few parameters as possible to achieve proper fits for

the bright-cold (blue traces) and dark-warm (light red traces)

stimulus conditions. Our first finding is that changes at the output

level, i. e. the Integrate-and-Fire neuron, alone are able to explain

both the reduction in firing rate (cf. Fig. 1C, 4E) and the

conservation of firing precision (cf. Fig 2D, 4H) under bright-cold

conditions. To this end, we increased the time constant of an

exponentially decaying outward current (called refractory current)

following each spike. We could also reproduce the reduction of the

firing rate by decreasing the output cell’s sensitivity to synaptic

input by increasing the threshold value H for spike initiation.

However, this modification also significantly reduced the firing

precision of the cell. We, therefore, suggest that the observed

temperature-dependent characteristics of the measured responses

may be due solely to a modification of the spiking mechanism (e.

g., changes in the kinetic rates of voltage-dependent ion channels),

as opposed to a decrease of the synaptic input.

The response of H1 under dark-warm conditions, when

compared to the bright-warm condition, is characterized by a

decrease of the firing rate, a loss of temporal precision and an

increased response latency. Based on the assumption that H1’s

biophysical properties remained unchanged during reduced

brightness, we aimed to reproduce these effects by parameter

changes in the motion detection pathway presynaptic to the H1

model. It is tempting to explain the change in response dynamics

by known adaptations to low luminance in both photoreceptors

[6] and their postsynaptic partners, the large monopolar cells

(LMC) [36] of the lamina. Under these conditions, both cells

increase their time constant leading to an increased low-pass

filtering of the input signal. However, we found that these

adaptations cannot explain the virtual absence of short term

velocity modulations in the response under dark-warm conditions.

From the viewpoint of a photoreceptor, different velocities of a

periodic grating are encoded as membrane potential oscillations

with varying frequencies set by the stimulus velocity. Applying a

temporal filter to the photoreceptor input therefore merely affects

how different frequencies (i. e., stimulus velocities) are attenuated,

but does not influence how well the motion detector output follows

the change in stimulus velocities.

Given the maximum stimulus velocity of about 1000=s and the

spatial wavelength of 100, the maximum temporal frequency

encoded by the photoreceptors is about 10Hz, which is way below

the cut-off frequency of photoreceptors and LMCs under all

conditions. An increased filter time-constant in the input lines to

the motion detector can therefore not account for the temporally

smeared out time-course of the H1 response under low light levels.

Rather, these response characteristics suggest a filtering of the

motion-sensitive signal, i. e. after the multiplicative interaction

within the motion detector. We accounted for these observations

by incorporating a low-pass filter with a luminance-dependent

time constant at the output of the motion detection circuit. The

decrease in firing precision (cf. Fig 2D, 4H) is both due to a

roughly hundred-fold increase of noise at the photoreceptors as

well as the final low-pass filter. The decrease of the firing rate for

dark stimuli is likely a consequence from smaller photoreceptor

and LMC responses to dark stimuli as measured previously [36].

We incorporated this effect into our model by scaling down the

photoreceptor impulse response for dark stimuli.

The model, as depicted in Fig. 4A, is unable to reproduce the

increase in the response latency for dark stimuli, in spite of using

photoreceptor impulse responses measured under such circum-

Table 2. Correlation between fundamental and information theoretic response properties.

Response property Rate RateDPrecision Precision PrecisionDRate

Information rate 0.94 0.91 20.58 0.23

Coding efficiency 0.72 0.68 20.37 0.23

Encoding window 20.83 20.86 0.36 20.51

Latency 20.71 20.45 0.69 0.40

Spearman rank correlation. Firing precision is the standard deviation of the first spike after a velocity transition. All p values were smaller than 0.01 (n = 325).
doi:10.1371/journal.pcbi.1000860.t002

Efficiency of Motion Processing Set by Firing Rate
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stances [6]. In order to fit the model parameters and produce the

results shown in Fig. 4E, H, we therefore manually introduced a

delay of 13ms as found by cross-correlation of the measurements

with the simulated response.

Final Conclusions
In summary, the various response parameters can be grouped

into three different classes according to whether or not they are

affected by temperature and/or luminance (Fig. 5). The firing rate

and the information rate are influenced by both temperature and

luminance. The encoding window and the coding efficiency are

barely affected by temperature and by luminance. Finally, the

latency and spike jitter are mainly affected by luminance, but only

weakly if at all by temperature.

Our model could reproduce the decrease in firing rate and

conservation of spiking precision for cold conditions by incorpo-

rating a refractory current following each spike with a tempera-

ture-dependent time constant. The decrease in temporal precision

for dark stimuli was modeled by adding a higher amount of noise

to the photoreceptor input and lowpass-filtering the motion-

detector output with a luminance-dependent time constant. The

decrease in firing rate for darker stimuli is likely a consequence of

reduced photoreceptor response amplitudes and was modeled by a

lowering the photoreceptor impulse response.

The near independence of latency and spike jitter from

temperature is in contrast to the latency of photoreceptor

responses for flash stimuli, which have Q10 values between 0.35

and 0.66 [6,7]. Thus, it seems that the latency of the system

depends less on temperature than the latency of the photorecep-

tors. Together with the remarkable correlation between H1’s

latency and firing precision, and with the fact that responses after

velocity transitions are more delayed than in steady firing, this

suggests that photoreceptors are not the bottleneck of the latency

in the system: considerable amount of delay is introduced in the

response during motion computation and possibly during H1’s

dendritic integration. This is in agreement with our model

simulations, which required suitable parameter changes in later

stages to mimick the experimental results. Moreover, faster

responses in the first stage of the visual system do not improve

firing precision in subsequent stages. The response property which

seems to be used to control the information throughput when

perturbations arise is the mean firing rate. This dominance of the

mean firing relative to the firing precision is less pronounced in

other sensory modalities like audition [36], but has also been

observed in other systems, like in the retina of guinea pigs [37] or

in the proprioceptive afferents in crustacean limbs [39].

Materials and Methods

Preparation, Recording and Temperature Control
Calliphora vicina flies were maintained in the department stock at

19–220C, 50–60% relative humidity and 12h-12h light-dark cycle.

We recorded from 84 female flies, 7–14 days after eclosion. After

immobilization with wax, a small hole was cut in the back of the

head and the air sacs and fat tissues that cover the lobula plate

were put aside. The fly was then transferred into a metallic case

which enclosed its entire body except the head. To isolate the head

thermally from the environment a soft airstream was blown

frontally on it. Ringer’s solution was added regularly to the brain

to prevent dehydration. The temperature of the case, airstream

and solution was regulated by a controlled Peltier device. Head

temperature was measured using a microthermoprobe (AD

instruments) and a thermometer (GMH3210, Greisinger electron-

ics, Germany). Since the microthermoproble caused considerable

tissue damage, temperature and electrophysiological recordings

could not be done simultaneously. The head temperature was

therefore inferred from the temperature of the metallic support.

The relation between head and support temperatures was

measured in pilot acquisitions for three different flies. Tungsten

electrodes (&1MV) were used for recordings from the H1 neuron,

Figure 4. Model structure and simulation results. A Structure of the elementary motion detection circuit of the model. B Schematic of the
Integrate-and-Fire neuron used for simulating H1 responses. C A segment of the image velocity as a function of time, same excerpt as shown in
Fig. 1A. D Simulated raster plot and E Simulated average firing rates for each out of three stimulus conditions (averaged over 1500 trials) as indicated
in the legend. F Segment of a stimulus waveform during a velocity transition from inhibitory to excitatory direction; same excerpt as shown in Fig. 2D.
G Simulated raster plots of the responses in 20 trials at three different conditions. H Probability distribution of the arrival time of the first spike for the
three different conditions shown above. Legend as in 4E.
doi:10.1371/journal.pcbi.1000860.g004

Figure 5. Overview of the results. The mean coefficient of
temperature (Q10) for luminances up to 1 cd m{2 are represented by
black squares, and for luminances above 1 cd m{2 , by gray squares. The
shaded region correspond to coefficient of 1. Coefficients smaller than 1
were inverted, for sake of comparison. Similarly, the blue squares
represent the mean amplitudes of the coefficient of luminance (K1000)
for temperatures up to 220C, whereas red squares represent the mean
amplitudes for higher temperatures.
doi:10.1371/journal.pcbi.1000860.g005

Efficiency of Motion Processing Set by Firing Rate
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which was identified by its position in the optic lobe and its

characteristic response to visual stimuli. After amplification and

filtering, H1 responses were processed on-line by a threshold unit

which generated a pulse of 1.2 ms when a spike was detected. The

pulses were then sampled at 1kHz and saved in a microcomputer

for off-line analysis.

Visual Stimulation
The visual stimulus was presented on CRT-monitor

(M21LMAX, Image systems corp., USA) updated at 240 Hz.

The visual field stimulation has a area of 7206830, starting at head

midline (azimuth = 00). The image used was a square-wave grating

with 100 spatial wavelength and contrast of 67%. The image

velocity v was drawn from a Gauss-Markov process [40], with

mean of &00s{1, standard deviation of &400s{1 and correlation

time of &400 ms. For each acquisition, the stimulus, whose

duration was ten seconds, was repeated 150 times, with a interval

of two seconds between trials. The image was presented without

motion for two minutes before the start of the acquisition, to adapt

the photoreceptors to the mean luminance level. The first fifteen

trials and the first second of each trial were discarded to avoid

accommodation effects and transient responses.

Data Analysis
The response stationarity over trials was quantified by an

accommodation index, defined as the ratio of spike count of the

first and hundredth trials. Since a higher accommodation rate

would overestimate the response variability, only acquisitions with

accommodation indexes between 0.7 and 1.3 (338 from 359

acquisitions) were used for further analysis. These limits were

determined based on an analysis of a surrogate data, with several

different accommodation indexes. We estimate that a reduction of

0.3 in the index represents a reduction of 5% in the information

rate, in relation to an acquisition with the same mean firing rate

and approximately unitary index. The estimation of the response

variability might also be compromised if the responses entrain with

the refresh rate of the video monitor. The degree of entrainment

was measured by the residual power of the mean time-dependent

firing rate at 238–242Hz. Power spectra were calculated using the

Welch-Bartlett method [41], with sampling frequency of 1KHz,

window length 512 ms, with an overlap of 256ms. Other window

lengths and overlaps yielded similar results. The residual power

was obtained by removing linear trends in the spectra.

Acquisitions in which the averaged residual power within the

interval 238–242 Hz was higher than 0.37 dB - three standard

deviations of the residual power distribution for all acquisitions -

were discarded (13 out of 359 acquisitions).

To calculate the information rate between stimulus and

response, spike trains were discretized in bins of 2ms and the

probability distribution of binary words w of length L was

estimated. The information rate was then calculated as

I(S; RDL)~
1

L
(H(RDL){H(RDt,L))

where H(RDL)~{
P

w p(w) log2 p(w) is the entropy of the

response, and H(RDt,L) is the entropy of the response given a

particular time t relative to the stimulus, averaged over t. The

coding efficiency was then calculated as

g~
H(RDL){H(RDt,L)

H(RDL)

The optimal encoding window was defined as the word length in

which the information rate was maximal

L�~arg max
L

Î(S; RDL)

Similarly, the response latency was estimated as the lag t between

image velocity and response that maximized I(V ; RDL�,t), that is

t�~arg max
t

1

L�
(H(RDL�){H(RDv(t,t),L�))

To calculate H(RDv(t,t),L�), the image velocity v(tDt) was

discretized in bins of 10s{1.

To reduce the bias of the entropy estimations, a combination of

jackknife [42] and shuffled response surrogates was applied. The

corrected information rate was calculated as [43]

ÎI(S; RDL�)~Ijack(S; RDL�)(1{
Ijack(S; Rshuf fled DL�)

Ijack(S; RDL�)

� �b

)

where Ijack~
1

L�
( eHH(RjL�){ eHH(Rjt,L�)). The jackknife estimator

eHH was calculated as

eHH~NH{(N{1)H :ð Þ

where

H :ð Þ~
1

N

XN

k~1

Hi

and Hi~H(r1, . . . ,ri”1,ri+1, . . . ,rN) is the estimation of the

entropy H without using the trial ri and N is the total number

of trials. A pilot acquisition with 596 trials was used to determine

the estimation error as a function of the number of trials. The b
that minimizes the mean bias for 137 trials was 1.13. The maximal

difference between the information estimations using 100 and 596

trials was around 1%, for a binwidth Dt of 2ms and word lengths L

between 2 and 20ms.

The contribution of the precise spike times to the information

rate at the optimal encoding windows was determined by a

comparison with a second encoding mode, in which only the

number of spikes within the word was considered to discriminate

different words.

Statistical significance was assessed by non-parametric statistical

tests - Wilcoxon sign rank for single, Wilcoxon rank sum for

double and Kruskal-Wallis for multiple comparisons. All tests were

two-tailed. The sample size for each condition for double

comparison was estimated as 8 independent measurements

(detected difference of 10%, with size of 0.08 and power of 0.85)

[44]. Error bars reported in the graphs are confidence intervals

(a~0:08), calculated using non-parametric bootstrap with one

thousand replications [45]. To measure the correlation between

random variables, zero and first order Spearman rank correlation

coefficients were used.

The temperature coefficient Q10 of a determined response

property f was defined as

Q10(f )~
f (250 C)

f (150 C)
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where f (250 C) and f (150 C) were obtained from a linear least-

square fit of the data. The coefficient of luminance K1000 was

defined as

K1000(f )~
f (100 cd m{2)

f (0:01 cd m{2)

and calculated in the same way as Q10.

Modeling
Input signals ranging from 20.67 to 0.67 were computed from

the velocity profile used for the experiments for an array of 80

photoreceptors spaced at 0:10 spatial resolution. We added

Gaussian noise to each of these input signals (m~0, s~
1

vIw

,

with vIw~9:2 or vIw~0:1) and convolved them with

photoreceptor impulse responses taken from [6]. The photoreceptor

output was fed through a further filter stage consisting of a high-pass

filter (t~0:045s) and 25% of the unfiltered photoreceptor output. 60

pairs of photoreceptor outputs with a spatial distance of 2:00 were

processed by an array of so-called Reichardt-Detectors [35]. One

such Reichardt Detector consisted of two mirror-symmetrical

subunits, each multiplying the low-pass-filtered signal (t~0:02ms)

of one input line by the high-pass-filtered signal (t~0:1ms) of the

neighboring input line. The output signals of the detectors were

further processed by a sigmoidal synaptic non-linearity

(gout(g)~
0:25pS

1ze(g{0:02)=0:1
) and a low-pass-filter (t~1ms for bright

stimuli, t~60ms for dark stimuli) before providing excitatory and

inhibitory input to the output model neuron. The final stage was

an Integrate-and-Fire neuron (Fig. 4B) integrating over all

synaptic inputs. It also received a noise current (Gaussian

distributed, m~0nA, s~0:5nA) and a refractory current

following each spike (Irefrac(t{tspike)~{0:0175nA e{(t{tspike)=t,

with t~1ms for the warm and t~6:5ms for the cold

condition). Membrane currents are described by C _VVzgLVzP
k (ge,k(V{Ee)zgi,k(V{Ei))~InoisezIrefrac, with C~0:5pF ,

gL~0:1mS, Ee~50mV , Ei~{30mV , and ge,k,gi,k the outputs

of the k-th motion detector. This ordinary differential equation

was simulated using the explicit Euler method. A spike was fired

when the potential V crossed a threshold of H~3:45mV above

the resting potential. The firing rates depicted in Fig. 4E and the

distribution of the first spikes after a velocity transition in Fig. 4H

were computed by averaging over 1500 trials.

The parameters of the model were fit manually to minimize the

distance between the measured firing rates and those produced by

simulating the model for several hundred trials. We also used

genetic algorithms to search for parameter sets that minimize this

error but could not improve the results found before during

manual search.

Supporting Information

Figure S1 Information rate as a function of the encoding

window. a. The information rate between stimulus and a

representative H1 response as a function of the encoding window,

for timing and count encoding modes. Lr* is the encoding window

where the information rate in the timing mode is maximal. b.

Respective coding efficiencies. c. Information rates (timing mode)

between the discretized velocity and the response, calculated at the

optimal encoding window. Response latency was defined as the lag

that maximizes the information rate.

Found at: doi:10.1371/journal.pcbi.1000860.s001 (0.08 MB PDF)
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